Modelling for the design and assessment of IPM solutions

DUTE

Jean-Noël Aubertot (INRA)

IPM Innovation in Europe, Poznan, 16th January 2015

pure

A wide range of objectives for modelling

- Warning systems
- Decision Support System for chemical or biological control
- Design of agroecosystems less susceptible to pests
- Design of strategies to preserve cultivar resistances (or pesticide efficacy)
- Design of landscape management strategies to limit pest development
- Design of control strategies throught crop architecture management
- Yield loss analysis
- Invasive species analysis
- Analysis of the effects of climate change on pest development
- Assess various performances of IPM strategies
- Teaching, communicating

Videos to raise farmers' awareness about the impact of their cropping practices at the landscape level

Aubertot et al, 2006

A wide range of modelling technics...

- Conceptual modelling
- Set of differential equations
- Set of difference equations
- Agent based models
- Statistical models
- Networks
- Matrices
- Qualitative modelling
- •

Main outputs from WP1 with regards to modelling

DUIR

- UNISIM (N Holst, AU): a collaborative modelling platform to design domain specific language-based models
- DEXIPM (Pelzer et al, INRA): an *ex-ante* and *ex-post* aggregative multicriteria assessment tool of IPM strategies
- SYNOPS (J Strassmeyer et al, JKI): a multi-level pesticide risk assessment tool
- PREMISE (Hennen et al, DLO): multi-level pesticide risk assessment tool (spatial scale, use of indicators)
- X-PEST and IPSIM (Aubertot, Robin et al): multiple pest modelling
- Optimisation technics (Sabbadin et al, INRA): Matlab toolbox for GMDP (and other approaches)

Injury Profile SIMulator. : wheat case study

Aubertot and Robin, 2013

DUTE

Issues

- To enhance agroecosystem sustainability
- Methodological innovation for the design and assessment of IPM-based cropping systems

Objectives

- Development of a generic modelling platform to design <u>qualitative</u> models that predict injury profiles
- To enhance vertical and horizontal integration of IPM

Conceptual framework of the approach

*Willocquet et al, 2008

DUTE

A hierarchical deterministic bayesian network to predict the severity of a single pest (use of DEXi; Bohanec, 2014)

> Severity of Pest 1 without any other pest -Cropping practices -Cultural control Primary inoculum management -Interaction between crop sequence and tillage Prophylactic measures -Sowing date: escape Mitigation through crop status -Sowing rate -Fertilisation -Irrigation -Pruning -Crop growth regulation -Genetic control (cultivar choice, cultivar mixture) -Biological control -Physical control Chemical control Pesticide treatment Use of non lethal chemicals (pheromones, repellents) Soil and climate -Soil -Climate Interactions at the territory level -Beneficial sources -Primary inoculum sources Physical barriers

Aubertot and Robin, 2013

and

Combination of individual pest models to predict an injury profile (with interactions)

🖻 🔎 🔳 Injury profile 🖻 🛲 Severity of Pest 1 Severity of Pest 1 without any other pest. Overall effect of the other pests im Number of pests with high facilitation 🖆 🛲 Effect of Pest 2 on Pest 1 ⊡…■ Severity of Pest 2 without any other pest 🛄 🖣 Theoretical effect of Pest 2 on Pest 1 ሱ 🔚 Effect of Pest 3 on Pest 1 ⊡…■ Number of pests with low facilitation
■ Image: Mumber of pests with no effect Image: Market of the second im Mumber of pests with high reduction effect 🗄 🗝 Severity of Pest 2 Severity of Pest 3

Aubertot and Robin, 2013

DUTE

Definition of aggregating tables using international literature and expert knowledge

Factor	Direction of the effect	Intensity of the effect	Impact on eyespot development	References
Tillage	+/-	++	Contradictory results. For some authors, reduced soil tillage decreased eyespot infection. For others, eyespot was often more severe after ploughing than after non-inversion tillage.	[1-14, 29, 40]
Preceding and pre- preceding crop	+	++	Preceding and pre-preceding host crops are known to favour eyespot. However, the interaction between tillage and the crop sequence has to be taken into account.	[4, 9, 14-21, 29, 40, 59]
Sowing date	+	++	Eyespot has always been reported to be more severe in early sown crops.	[4, 14, 15, 17, 20-21, 40]
N fertilisation rate	+	+	High nitrogen availability generally favoured the disease. However these results were questioned.	[15, 20]
Sowing rate	+	+	Prevalence was increased by high plant density and/or low shoot number per plant.	[15, 17, 20]
Cultivar choice	+	+++	The use of varieties with resistance could obviate the need for fungicide.	[4, 21, 22]
Cultivar mixture	0	0	No significant difference was found between the disease level in mixtures and the mean of disease level of the mixture components in pure stands.	[23-25]
Climate	+	++	Eyespot strongly depends on climate. Infections require periods of at least 15 h with T° between 4°C and 13°C and HR>80% (from October to April).	[13, 20, 26-29]

Robin et al, 2013

pure

pure

Example of an aggregative table

	Cultivar choice	Level of N fertilisation	Sowing rate	Mitigation through crop status
1	Very susceptible to susceptible	Excess level	High	Favourable
2	Very susceptible to susceptible	Excess level	Normal	Favourable
3	Very susceptible to susceptible	Excess level	Low	Favourable
4	Very susceptible to susceptible	Balanced level	High	Favourable
5	Very susceptible to susceptible	Balanced level	Normal	Favourable
6	Very susceptible to susceptible	Balanced level	Low	Favourable
7	Moderetely susceptible	Excess level	High	Moderately favourable
8	Moderetely susceptible	Excess level	Normal	Moderately favourable
9	Moderetely susceptible	Excess level	Low	Moderately favourable
10	Moderetely susceptible	Balanced level	High	Moderately favourable
11	Moderetely susceptible	Balanced level	Normal	Moderately favourable
12	Moderetely susceptible	Balanced level	Low	Moderately favourable
13	Quite to very resistant	Excess level	High	Unfavourable
14	Quite to very resistant	Excess level	Normal	Unfavourable
15	Quite to very resistant	Excess level	Low	Unfavourable
16	Quite to very resistant	Balanced level	High	Unfavourable
17	Quite to very resistant	Balanced level	Normal	Unfavourable
18	Quite to very resistant	Balanced level	Low	Unfavourable

Evaluation of the predictive quality of IPSIM-Wheat-Eyespot

		Simulated					
		0-20%	20-40%	40-60%	60-80%	80-100%	Total
Observed	0–20%	- 217 41.3	49 9.32	5 0.951	1 0.190	0 <i>o</i>	272 51.7
	20-40%	- 61 11.6	9 1.71	14 2.66	0 0	1 0.190	85 16.2
	40–60%	- 41 7.79	3 0.570	13 2.47	4 0.760	9 1.71	70 13.3
	60-80%	- 10 1.90	2 0.380	17 3.23	3 0.570	11 2.09	43 8.17
	80-100%	- 7 1.33	0 0	27 5.13	4 0.760	18 3.42	56 10.6
	Total	- 336 _{63.9}	63 12.0	76 14.4	12 2.28	39 7.41	526 100.

pure

Accuracy=0.49 QWKappa=0.61

Example of simulations (eyespot)

Option	Organic system	High input system
. Final incidence of eyespot	20-40 %	60-80 %
Effects of cropping practices	Unfavourable	Moderately favourable
Primary inoculum management: interaction between crop sequence and tillage	Unfavourable	Favourable
Preceding crop	Non host	Host
Pre-preceding crop	Non host	Host
Tillage after harvest of the previous crop	Inversion tillage	Non-inversion tillage
Tillage after harvest of the pre-previous crop	Inversion tillage	Non-inversion tillage
Escape: effects of the sowing date	Late sowing	Early sowing
Mitigation through crop status	Unfavourable	Favourable
Cultivar choice	Quite to very resistant	Very susceptible to susceptible
Level of N fertilisation	Balanced level	Balanced level
Sowing rate	High	Normal
Chemical control: use of fungicide	None	One
Effects of soil and climate	Very favourable	Very favourable
Soil	Favourable	Favourable
Climate	Very favourable	Very favourable
Autumn/winter	Very favourable	Very favourable
Spring	Very favourable	Very favourable
Interactions with the territory	Neutral	Neutral
Beneficial sources	Normal	Normal
Primary inoculum sources	Normal	Normal

Partial conclusion

- Lack of precision
- Subjectivity when defining aggregating tables
- No explicit representation of underlying mechanisms
- Static models
- Threshold effects

- Lack of precision
- Combination of various sources of knowledge
- Fair predictive quality without calibration
- Transparent
- Very easy to develop and to present
- Great for communicating and teaching
- Better vertical and horizontal integrations in IPM

Conclusion

- Modelling is a key tool with regard to various aspects of IPM, especially, integration
- Conceptual models not only generate simulation models, but also experiments and diagnoses of commercial fields
- They certainly need to be revised
- Modelling techniques also need developments in order to handle higher levels of complexity for IPM design and assessment