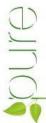


Maize-based rotations - Economic and environmental evaluation of IPM strategies

<u>V.P. Vasileiadis¹</u>, W. van Dijk², G. Urek³, R. Leskovšek³, J. Razinger³, L. Furlan⁴, E. Sartori¹, A. Verschwele⁵, I.J. Holb⁶, A. Vámos⁶, M. Giraud⁷, F. Leprince⁸, N. Verjux⁸, G. Espagnol⁸, M. Sattin¹


- ¹CNR Italy
- ² DLO-The Netherlands
- ³ KIS-Slovenia
- ⁴ VENETO AGRICOLTURA-Italy
- ⁵ JKI-Germany
- ⁶ UDCAS-Hungary
- ⁷ INVIVO-France
- ⁸ARVALIS-France

Costs-benefit analysis (CBA)

Gross margin

- Gross margin: Financial yield variable costs
- Financial yield
 - Yield
 - Derived from the experiments
 - Price
 - Average price (Eurostat) or regional prices
 - No extra price for IPM-strategies

Cost Benefit Analysis

Total variable costs

- Inputs
 - Seeds, pesticides, herbicides, biological agents, fertilisers
- Application costs
 - Contract work prices
 - Including cost for labour, machinery and fuel
 - Regional contractor prices

Environmental risks

SYNOPS

- Calculates risks of pesticide use
 - Aquatic life
 - Terrestrial life
 - Groundwater leaching
- Same conditions for all experiments
 - Buffer zone: 1 m
 - Drift reduction pesticide application: 50%

Overall sustainability

DEXiPM

- Evaluates sustainainability of systems
 - Economic
 - Environmental
 - Social
- Only used for <u>on-station</u> experiments
- Adjusted ex-post version using the quantitative results of CBA and SYNOPS

On-station experiments Gross margin at rotation level

Site	Cropping systems and level of crop protection								
	CON	IPM1 (ADV)	IPM2 (INN)						
IT	Maize-maize-winter	Maize-winter wheat-	Maize-winter wheat-CC-						
	wheat-maize (2 nd cycle)	soybean-maize(2 nd cycle)	soybean-CC-maize (2 nd cycle)						
HU	Maize-maize-winter wheat-	- Maize-winter wheat-peas-	Maize-winter wheat-CC-peas-						
	maize (2 nd cycle)	maize(2 nd cycle)	CC-maize(2 nd cycle)						
FR	Continuous maize	Maize/soybean	Maize/soybean						

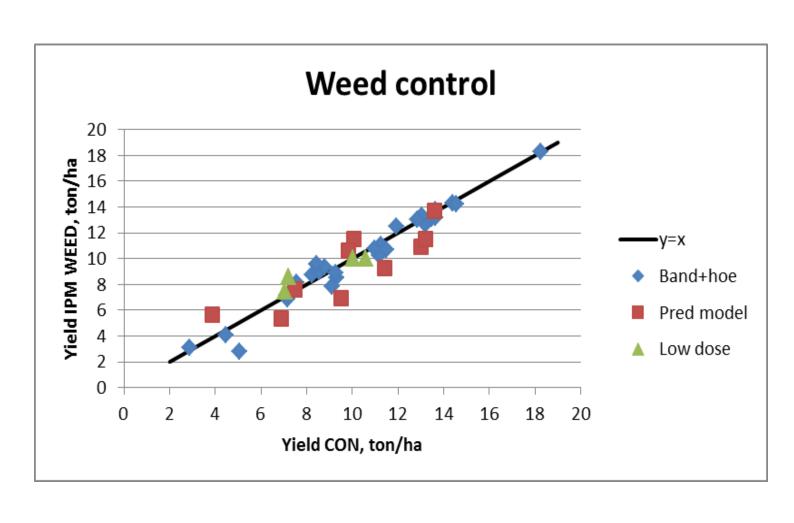
Site	Financial yield (€/ha)		vari	tal able sts ha)	Gross Margin (€/ha)	
	ADV	INN	ADV	INN	ADV	INN
IT	-121	-224	-341	-269	220	45
HU	-375	-389	113	122	-489	-511
FR	-392	-541	-62	-102	-330	-439

On-station experiments Environmental risks, mean value in rotation

		Acute			Chronic		
		Aquatic	Terrestrial	Groundw	Aquatic	Terrestrial	Groundw
Italy	CON	1.174363	0.007557	0.926424	29.83097	0.194401	0.196472667
	ADV	0.150414	0.03073	0.144526	1.071505	0.262366	0.029236667
	INN	0.022155	0.000754	0.102721667	0.092419	0.020359	0.020544333
Hungary	CON	1.747639	0.005756	0.000426	24.74839	0.037292	8.53333E-05
	ADV	0.633759	0.00725	0.004726667	13.1587	0.066189	0.000945333
	INN	0.55124	0.006737	4.33333E-06	4.558679	0.06162	0.000001
France	CON	0.856261	0.009179	32.104336	4.531933	0.356362	6.420867
	ADV	0.742561	0.007961	16.347719	3.38607	0.329185	3.2695435
	INN	0.403019	0.002627	0	0.403019	0.273971	0

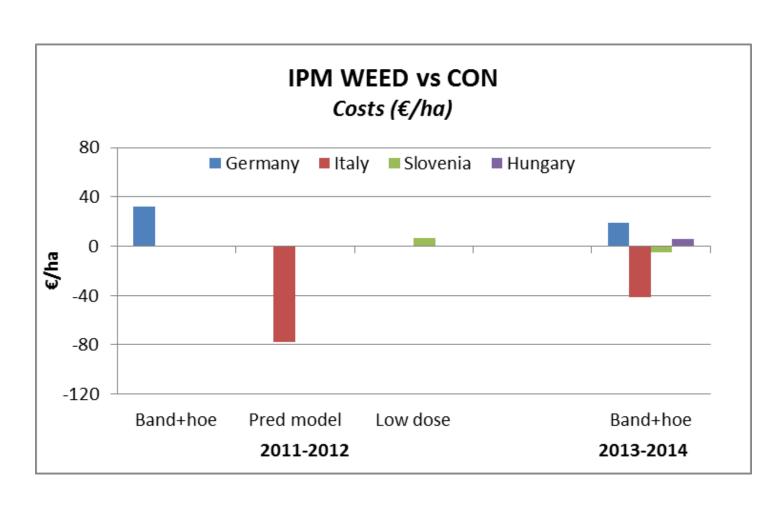
Four risk categories of SYNOPS	acute risk	chronic risk	
very low risk		ETR<0.01	ETR<0.1
low risk		0.01 <etr<0.1< th=""><th>0.1<etr<1< th=""></etr<1<></th></etr<0.1<>	0.1 <etr<1< th=""></etr<1<>
medium risk		0.1 <etr<1< th=""><th>1<etr<10< th=""></etr<10<></th></etr<1<>	1 <etr<10< th=""></etr<10<>
high risk		ETR >1	ETR >10

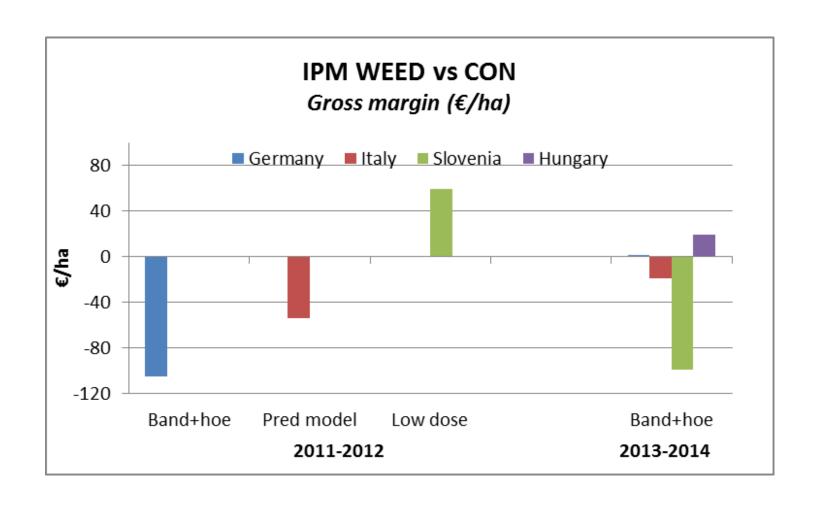
Risk (ETR)=
calculated
Exposure/Toxicity


On-station experimentsDEXiPM results

Country	System		Sustainabilit	.y	
		Economic	Environmental	Social	Overall
Italy	CON	M	VL	Н	M
	ADV	Н	M	Н	H
	INN	Н	Н	Н	VH
Hungary	CON	M	L	Н	M
	ADV	L	L	VH	M
	INN	L	Н	VH	M
France	CON	M	VL	M	L
	ADV	M	L	Н	M
	INN	L	M	Н	M

On-farm experiments

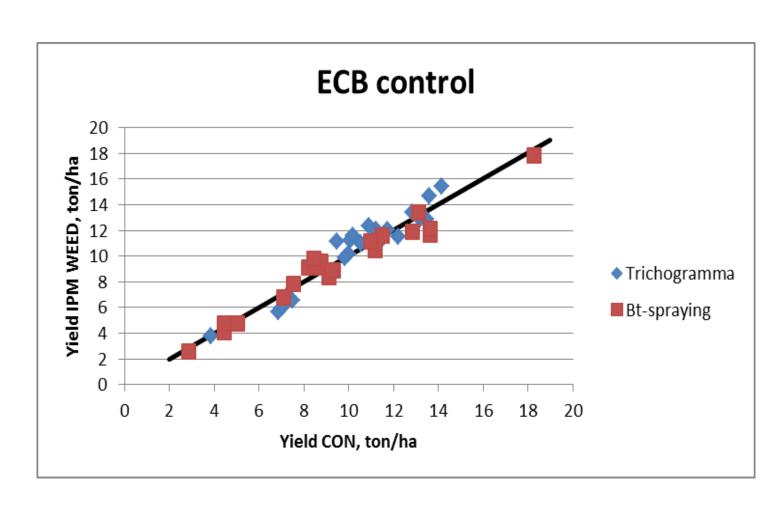

Weed control, Yields


On-farm experiments

Weed control, total costs

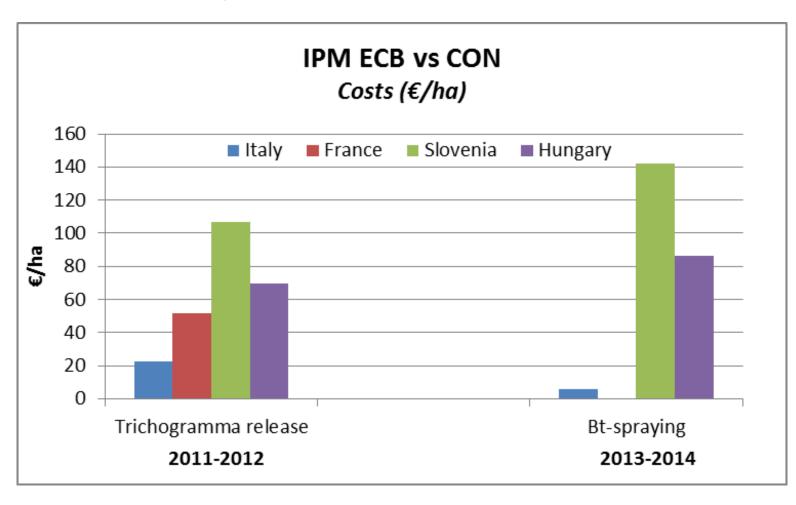
On-farm experiments Weed control, gross margin

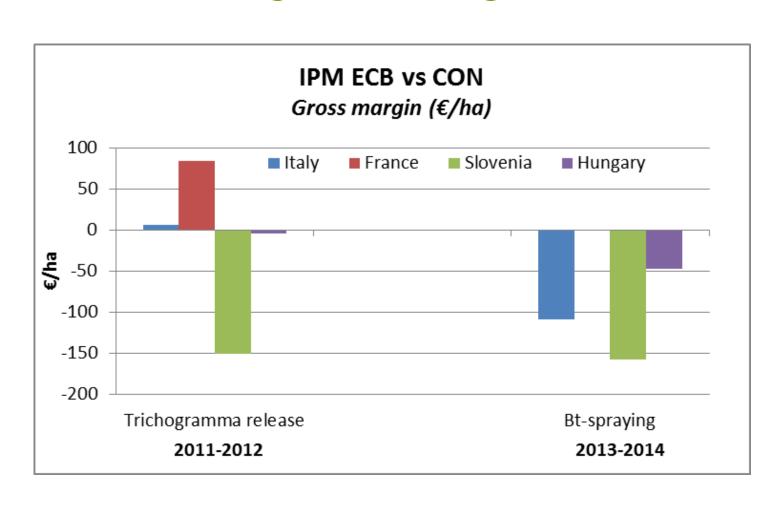
On-farm experiments Weed control, environmental effects


The second second							
		Acute			Chronic		
		AQUA	TER	GW	AQUA	TER	GW
GE	CON	0.60	0.00	6.29	5.32	0.01	1.26
4.5	IPM	0.41	0.00	2.11	3.61	0.00	0.42
SLO	CON	0.39	0.01	1.26	2.85	0.12	0.25
	IPM	0.19	0.00	0.19	1.24	0.02	0.04
HU	CON	0.32	0.00	0.00	3.06	0.02	0.00
	IPM	0.24	0.00	0.00	2.24	0.01	0.00
IT	CON	0.44	0.00	0.78	3.00	0.10	0.16
	IPM	0.27	0.00	0.03	1.39	0.03	0.01

Four risk categories of SYNOPS	ac	cute risk	chronic risk
very low risk	ET	ΓR<0.01	ETR<0.1
low risk	0.0	01 <etr<0.1< th=""><th>0.1<etr<1< th=""></etr<1<></th></etr<0.1<>	0.1 <etr<1< th=""></etr<1<>
medium risk	0.1	1 <etr<1< th=""><th>1<etr<10< th=""></etr<10<></th></etr<1<>	1 <etr<10< th=""></etr<10<>
high risk	ET	ΓR >1	ETR >10

Risk (ETR)= calculated Exposure/Toxicity


On-farm experiments *ECB control, Yield*


On-farm experiments

ECB control, total costs

On-farm experiments ECB control, gross margin


Conclusions (I)

- Tested on-station IPM-systems
 - Overall sustainability improved or the same
 - Economic sustainability decreased in HU and FR due to lower gross margin substituting maize in a sequence and to a lesser extent lower yields
 - Environmental sustainability improved
 - Rotation effects more visible after repeated rotation cycles


Conclusions (II)

- Tested on-farm tools
 - Weed control
 - On average IPM-tools combining chemical and mechanical weed control do not affect costs and gross margin and decrease the environmental risks
 - ECB control
 - On average the gross margin of the tested biological tools is lower than in the CON treatment, however, effects are not significant

Overall conclusions

- Overall IPM seems to be applicable even though for an arable crop (low value)
- Tools tested on-station and validated on-farm in real conditions provided sufficient pest or weed control
- IPM greatly reduced maize reliance in pesticides
- IWM tools tested are economically sustainable
- Pests and weeds can be managed with an advanced IPM level using tools that are already available
- Capacity building and willingness of farmers and/or contractors important to use tools in the proper way and have sustainable results

Thank you for your attention!

vasileios.vasileiadis@ibaf.cnr.it

