

Fungicide resistance management

Femke van den Berg

Grains Research & Development Corporation

ROTHAMSTED RESEARCH

Chemicals Regulation Directorate (CRD)

Introduction

- Resistance management strategies should be based on evidence
- Example statement: 'It is important to use the maximum dose permitted on the product label, in order to prevent, or at least slow down, the development of resistance.''

Are there governing principles?

DULG

REVIEWS Further

Click here for quick links to Annual Reviews content online, including:

Other articles in this volume

Top cited articles

Top downloaded articles

Our comprehensive search

Governing Principles Can Guide Fungicide-Resistance Management Tactics

Frank van den Bosch,^{1,*} Richard Oliver,² Femke van den Berg,¹ and Neil Paveley³

¹Rothamsted Research, Harpenden, AL5 2JQ, United Kingdom; email: frank.vandenbosch@rothamsted.ac.uk

²Environment & Agriculture, Centre for Crop and Disease Management (CCDM), Curtin University, Bentley, Washington 6102, Australia ³ADAS, Duggleby YO17 8BP, United Kingdom

Annu. Rev. Phytopathol. 2014. 52:175-95

First published online as a Review in Advance on May 16, 2014

The Annual Review of Phytopathology is online at phyto.annualreviews.org

This article's doi: 10.1146/annurev-phyto-102313-050158

Copyright © 2014 by Annual Reviews. All rights reserved

*Corresponding author

Keywords

resistance management, governing principle, strategy, tactic, selection coefficient, exposure time, dose, mixture, alternation, spray timing

Abstract

Fungicide-resistance management would be more effective if principles governing the selection of resistant strains could be determined and validated. Such principles could then be used to predict whether a proposed change to a fungicide application program would decrease selection for resistant strains. In this review, we assess a governing principle that appears to have good predictive power. The principle states that reducing the product of the

Governing principles Based on Milgroom & Fry (1988) and Staub & Sozzi (1983)

The selection coefficient:

$$sT = (r_R - r_S)T$$

Rate of increase of resistant strain

Rate of increase of sensitive strain

Exposure time

Strategy 1: Reduce both r_R and r_S Strategy 2: Reduce r_R relative to r_S Strategy 3: Reduce exposure time

Tactics investigated

Success of tactics summary

		increase	No effect	decrease	total
T1	Increase dose	16	1	2	19
Т2	Increase spray number	6	0	0	6
Т5	Split the dose	10	0	1	11
Т3	Mix: add a fungicide	1	6	46	53
Т4	Alternate	1	4	0	5
Т6	Adjust spray timing	3	1	2	6

$$\blacktriangleright$$
 sT = $(r_R - r_S)T$

Adding a mixing partner: strategy 1

- ▶ $sT = (r_R r_S)T$
- > A mixing partner affects r_R and r_S in the same way
- > Strategy 1 applies: reduce both r_R and r_S

	Adding a mixing partner selection				
	increase	No-effect	decrease		
Multi-site	1	3	27	31	
Single-site	0	3	16	19	

General conclusion: as expected adding a mixing partner reduces selection for resistance

Adding a mixing partner – further details

Mixtures as a Fungicide Resistance Management Tactic

Frank van den Bosch, Neil Paveley, Femke van den Berg, Peter Hobbelen, and Richard Oliver

First, third, and fourth authors: Rothamsted Research, West Common, Harpenden, AL5 2JQ, United Kingdom; second author: ADAS High Mowthorpe, Dugglesby YO17 8BP, United Kingdom; and fifth author: Environment & Agriculture, Centre for Crop and Disease Management (CCDM), Curtin University, Bentley, WA 6102, Australia. Accepted for publication 14 August 2014.

ABSTRACT

van den Bosch, F., Paveley, N., van den Berg, F., Hobbelen, P., and Oliver, R. 2014. Mixtures as a fungicide resistance management tactic. Phytopathology 104:1264-1273.

The effect of dose: strategy 2

 \blacktriangleright sT = $(r_R - r_S)T$

> An increased dose reduces r_S more strongly than r_R

	Increased dose selection			
	increase no effect decrease		Total	
experiments	16	1	2 (1)	19
models	8	0	0	8

- Contrary to general held opinion there is clear evidence that an increased dose increases selection
- Careful: we are not advocating to reduce dose as this may compromise effective control!

DUre

The effect of dose – further details

Plant Pathology (2011) 60, 597-606

Doi: 10.1111/j.1365-3059.2011.02439.x

REVIEW

The dose rate debate: does the risk of fungicide resistance increase or decrease with dose?

F. van den Bosch^a*, N. Paveley^b, M. Shaw^c, P. Hobbelen^a and R. Oliver^d

^aRothamsted Research, Harpenden AL5 2JQ; ^bADAS High Mowthorpe, Dugglesby YO17 8BP; ^cSchool of Biological Sciences, University of Reading, Reading RG6 6AS, UK; and ^dEnvironment & Agriculture, ACNFP, Curtin University, Bentley, WA 6102, Australia

Number of applications: strategy 3

▶
$$\mathbf{s}T = (r_R - r_S)T$$

An increased number of applications increases the time-span over which selection acts

	increase	No effect	decrease	total
Increase spray number	6	0	0	6

General conclusion: an increased number of spray applications increases selection

Practical resistance management tactics

		increase	no effect	decrease	total
Τ7	Replace a spray	0	3	12	15
Т8	Mix and reduce dose	1	5	17	23
Т9	Alternate versus mixing	2	4	6	12

Summary

- Very simple governing principle can explain effect of fungicide resistance management tactics on selection for resistance in majority of cases
- > 84% of published cases agree with prediction
- ➢ 5% of published cases contradict predictions
- Useful tool to inform decisions about fungicide resistance management when there is no time to wait for the accumulation of new evidence

Thank you for your attention!

Femke van den Berg

Femke.vandenberg@rothamsted.ac.uk

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under the grant agreement n°265865- PURE

- Combining field experiments and modelling
- Governing principle, qualitative

OULE

- Dynamic models, towards quantitative
- Guide field research on resistance management
- Results influence policy through FRAC, FRAG, CRD, EPPO

FSFAR

Link to insecticide resistance literature

DULTE

The heterozygote is partially sensitive
At low frequency R genes are, due to sexual reproduction, mainly in heterozygotes

- Most plant pathogens are haploid at time when fungicide is applied, or are clonal
- Reasoning of insecticide resistance does not apply

Fungicide dose, missing evidence

- Mechanisms by which an increased dose may reduce resistance risk
 - Stress induced mutation
 - Mutation limitation (emergence)
 - Refugia
 - Converging dose-response curves
 - Partial resistance/multi-gene resistance
- These mechanisms are hypothetical, none have been shown to apply
- Virtually all available evidence suggests that increasing fungicide dose increases selection for resistance

The effect of Dose.

<u>Mutation limitation and emergence</u>

Fungicide dose, missing evidence

Neve & Powels (2005)

Adjust timing – protective vs curative

➢ <u>Strictly</u>:

DUFE

- Protectant : application prior to infection
- Curative: application after infection
- Brent and Hollomon (2007)

"to the authors knowledge there is no experimental evidence comparing the resistance risks of prophylactic versus threshold-based schedules, and research on this would be useful."

$$sT = (r_R - r_S) T$$

	increase	No effect	decrease	total
adjust timing	3	1	2	6

- Protective use is in many cases essential for effective disease control
- There is no evidence that protective use is essential for resistance management

