

Durable plant disease resistance by evolution management - how?

Marjolein Lof, Claude de Vallavieille-Pope Wopke van der Werf

SEVENTH FRAMEWOR

IPM

DULE

Background:

- Environmental effects of pesticides
- Withdrawal of active compounds
- Resistance development

Need to do more with cultural methods & genetic resistance

But resistance can also be broken.

Optimal usage of scarce resistance genes

- Placement in cultivars
- Placement in landscape
- Placement in time

Questions

DUFR

- What is the effect on durability of resistance genes of:
 - Gene stacking
 - Diversified use of genes in environment
 - Sequential usage of different resistance in time
 - Hybrid strategies of the above three
 - Rotational strategies
 - Clustering and spatial separation of host fields

Model approach - system

- Host: wheat (Triticum aestivum)
- Pathogen: Puccinia striiformis
- Mixture of fields

DULE

- Host and non-host fields
- Fraction of host are resistant fields
- Pathogen population
 - Fraction is virulent
 - Fraction is avirulent

Model approach – Dispersal

- Fraction of spores leave the field
- Dispersal kernel with fat tails
 - \rightarrow long distance dispersal

pure

Mutation & selection

– Selection scenarios

DUTE

- resistance breaking genotypes initially present
- Mutation and selection scenarios
 - virulence has first to emerge by mutation, and is subsequently selected

Landscape - France

Yellow rust data

pure

de Vallavieille-Pope et al., 2012

Landscape - France

- % wheat per department
 - 1989 2013

pure

Landscape - France

• Arable land

pure

- Corine land cover raster data

Simulation set-up

DULF

- Initial pathogen population (year 1)
 - 6 departments North-west France:
 - Nord, Somme, Calvados, Yvelines, Eure-et-Loir and Côtes d'Armor
 - 300 susceptible fields
 - Randomly selected
 - Selection scenario
 - Homogeneous distribution
 - Mutation scenario
 - Heterogeneous distribution

Simulation set-up

- 30 growing seasons
- 6 pathogen generations/year
- Within each pathogen population
 - Dispersal of spores
 - Selection (carrying capacity)
 - Reproduction
 - (Mutation)

DUFE

- Between growing seasons
 - local survival in departments Northwest coast

Scenario testing – deployment strategies

• Variety choice

DUFR

- Sequential use
- Pyramiding
- Concurrent use of single-gene and double-gene resistant varieties
- Simultaneous use of 2 (or 4) single-gene resistant varieties
- Crop rotation
 - 1year wheat followed by 2 years other crop
- Selection vs mutation

Results – spatial dynamics A(1)

DUFE

32

Results – spatial dynamics A(2)

pure

Results – spatial dynamics A(3)

pure

5 10 15 20 - - - -

32

Results – spatial dynamics A(4)

pure

32

Results – spatial dynamics V(1)

pure

 $\begin{array}{l} e^{10} / (500 * 500) \sim 0.09 \ /m^2 \\ e^{15} / (500 * 500) \sim 13 \ /m^2 \\ e^{20} / (500 * 500) \sim 1940 \ /m^2 \end{array}$

Results – spatial dynamics V(2)

pure

Results – spatial dynamics V(3)

pure

Results – spatial dynamics V(4)

DUFE

e¹⁰/(500*500)~0.09 /m² e¹⁵/(500*500)~13/m² e²⁰/(500*500)~1940/m²

32

8

Ω

9

۰Q

Results – spatial dynamics V(5)

DUFE

e¹⁰/(500*500)~0.09 /m² e¹⁵/(500*500)~13/m² e²⁰/(500*500)~1940/m²

32

8

Ω

9

۰Q

Results – spatial dynamics V(6)

DUTE

Results – spatial dynamics (A6)

pure

5 10 15 20 | | | |

32

DUITE

30

- Pyramid of two resistance genes did not break down
- Simultaneous use decreases the useful life as compared to sequential use
- Concurrent use breaks down the resistance of the pyramid

Results – crop rotation (sequential use)

DULE

- Crop rotation prolongs useful life
- Strongest increase when virulence has to emerge by mutation
- Minor increase when virulence is already present
- Positive effect even stronger for simultaneous growth

Conclusions on useful life

- When virulence is already present
 - Differences are small

DUITE

- When virulence has to emerge by mutation
 - Useful life was highest for pyramiding
 - Concurrent use reduces useful life of pyramid
- Crop rotation can prolong useful life

Results – 4 varieties (mutation)

DUTE

- 3 management strategies: remove and replace (O), prolong use (P) & remove and reallocate (R)
- Useful life highest for prolongation of use of a variety with broken down resistance

Results – 4 varieties

- 3 management strategies
 - replace (O, solid)

OUTE

- prolong (P, dashed)
- reallocate (R, dotted)
- Useful life highest for prolongation of use of a variety with broken down resistance
- Slower increase in hostpathogen compatibility for prolongation
- Compatibility for replace stay lowest because of newly introduced varieties

Results - 4 varieties - spatial pattern

DUre

- Useful life simultaneous growth < sequential use for 4 resistance genes
- Useful life simultaneous growth very variable for mixed deployment
- Large scale spatial pattern reduces useful life
 - Smaller variation (always low useful life)

Model approach

Carrying capacity

pure

- Field 500x500m with LAI of 5 \rightarrow 1250000 mm² lesions
- Size lesion 70-90 mm² (Milus et al., 2009)
- 80 mm² gives K~1.5 10¹¹

Discussion

DULG

- Sustainability = using existing resistance wisely
 - Remove and recycle genes

