DUTE

Response of pest (Codling moth) and pest-enemy (parasitoids) populations to landscape characteristics in (apple) orchard systems

B. Ricci*, M. Maalouly, P. Franck, J.-F. Toubon, J.-C. Bouvier, S. Maugin, J. Olivares, M. Siegwart, C. Thomas, <u>C. Lavigne</u>

Horticultural Plants and cropping Systems (PSH), INRA, Avignon, France

PURE WP 10.3

Poznan 13-15/01/2015

*Present address: INRA UMR Agroécologie, Dijon, France

Context

Landscape affects pest and pest enemies populations

- •species use habitats outside fields (food, overwintering...)
- dispersal abilities

introduction

JIIQ.

Specificities of perennial crops

stability
arboreal species
Landscape less important ?

What landscape elements to consider?

- land cover: amount of crops
 - amount of host crops
 - amount of semi-natural habitats
- land use : intensity of agricultural practices (e.g. crop protection)

How to consider them?

- amount -> habitat
- distance -> availability

Effects of landscape complexity

introduction

introduction

Pest abundance and amount of host crop in landscape

Pest species	SIGN	Sampled crop	Landscape variable	Buffer width
Leptinotarsa decemlineata	+	Potato	% potato of preveous year	2000 m
Thrips tabaci	+	Leek	% horticulture	5000 m
Rhophalosiphum padi	+	Cereal	cereal area/maize area	50000 m
Delphacodes kuscheli	+	Grassland	% winter pasture	2500 m
Cydia pomonella	_	Orchard	% orchard	100 m
Lobesia botrana	+	Vineyard	% vineyard	100 m
Empoasca vitis	_	Vineyard	% vineyard	100 m
Lobesia botrana	+	Vineyard	% vineyard	100 m
Empoasca vitis	_	Vineyard	% vineyard	100 m
Frankliniella occidentalis	+	Sweet pepper	% greenhouse	1000 m
Ceutorhyncus napi, C pallidactylus	_	Oilseed rape	% oilseed rape	800 m
Meligethes aeneus	_	Oilseed rape	% oilseed rape	1000 m
Rhophalosiphum padi	0	Spring barley	proportion of spring cereals to total cultivated area	400 m
Meligethes aeneus	0	Oilseed rape	% oilseed rape	500 m-6000 m
Eupoecilia ambiguella	0	Vineyard	% vineyard	100 m
Scaphoideus titanus	0	Vineyard	% vineyard	100 m
Ostrinia nubilalis	0	Maize	% maize	admin. units
Dasineura brassicae	0	Oilseed rape	% oilseed rape	100m-2000 m

introduction

Local context

Study site

A dense zone of apple production in the Lower Durance Valley Intensive production (mean ~10 insecticide treatments/ year) Dense windbreak network

Pest and pest enemies

Insect pest:

Codling moth, *Cydia pomonella (Tortricid)* 3 generations per year Resistances to biological and chemical insecticides

Studied pest enemies: Hymenoptera parasitoids

Questions

Codling moth

introduction

- Does the landscape surrounding orchards impact the abundance of codling moth in orchards?
- Is it necessary to consider crop protection at orchard and landscape levels ?
- Are the effects of local and landscape characteristics of similar magnitude?

Parasitism

Does the level of codling moth parasitism depend on on landscape characteristics ?

Approximately 40 orchards each year from 2006 to 2010

Counts of

Mat. Meth.

codling moths larvae adults emerging as codling moth adults emerging as parasitoids

Perilampus tristis

Pristomerus vulnerator

Description of apple orchard environments

At the orchard level

Mat. Meth.

- Crop production : organic vs. conventional
- Crop protection: number treatments ; exclusion nets;
- Hedgerow: physical structure and floristic composition

At the landscape level

- 50-250m-Buffer around apple orchards
- Land cover: proportion of perennial/ annual crops and semi-natural habitats (wood)
- Land use: proportion of conventional, organic and abandoned orchards
- Hedgerow network: length and orientation

Statistical analyses

Dependent variable (to explain)

Codling moth abundance

Considered factors

Mat. Meth.

Two options= with or without considering crop protection

Scale of effect

Orchard Orchard + hedge Orchard + hedge + landscape Orchard + hedge + landscape+ orchard * landscape

Model1 Model2 Model3 Model4

Model comparisons with AIC

Collected codling moths and parasitoids

Year	# orchards with codling moth	# orchards with parasitoids	# diapausing CM larvae	# adult individuals (# parasitoids)
2006	46	10	4853	2815 (112)
2007	45	7	3133	2753 (89)
2008	40	20	3239	2687 (80)
2009	33	13	4786	3990 (181)
2010	38	12	7595	5124 (85)

Results

DUFE

Year + Orchard*** + hedge + landscape** (conventional)

Amount of conv./org. within 250m orchard that matters

Landscape Less than x% org/y% conv orchard within 250m (N=155/N=93) More than x% org/y %conv orchard within 250m (N=41/N=103)

Results

Magnitude of local and landscape effects

Adjusted means via model predictions

Local

Crop protection	Abundance		
organic	3.41		
conventional	0.78		

Landscape

Conventional-250 m	Abundance
>25%	1.25
<25%	2.17

Similar order of magnitude of local and landscape effects

But...factors affecting codling moth parasitism

Results

DUL

pure

Conclusions

Main results

- Codling moth abundance and parasitism are affected both by local and landscape effects
- Agricultural practices are most important at both local and landscape scale
- Landscape effects have similar order of magnitude as local effects

Discussion

- Landscape effect also on a perennial crop
- Need for generalisation to other landscape
- Interaction with agricultural practices ?

Adapted from Tscharntke 2005

Thank you for your attention!

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under the grant agreement n°265865- PURE

Impact of threshold values on landscape effects

Im(log(densite.larve.diap+1)~
AB+Annee+hote.en.bdure+Bio0a250)

Threshold value

Lm(log(densite.larve.diap + 1) ~ AB + Annee + hote.en.bdure + Conv0a250s)

Threshold value

Lm(log(densite.larve.diap + 1) ~ (AB) + Annee + hote.en.bdure +vergera250

Threshold value

Results

Magnitude of local and landscape effects

Adjusted means via model predictions

Local

Crop protection	Abundance	
organic	3.25	
conventional	0.82	

	organic	conv
Org>15%	10.7	
Org<15%	3.93	

Landscape

conventional	Abundance	organic	Abundance
>25%	1.25	>15%	3.95
<25%	2.17	<15%	1.05

Same order of magnitude of local and landscape effects